ArmNN
 24.08
TransposeConvolution2dLayer Class Reference

This layer represents a 2D transpose convolution operation. More...

#include <TransposeConvolution2dLayer.hpp>

Inheritance diagram for TransposeConvolution2dLayer:
[legend]
Collaboration diagram for TransposeConvolution2dLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the TransposeConvolution2d type. More...
 
TransposeConvolution2dLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer. More...
 
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of TransposeConvolution2dLayer. More...
 
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 Infers the output shapes from given input shapes and layer properties. More...
 
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer. More...
 
- Public Member Functions inherited from LayerWithParameters< TransposeConvolution2dDescriptor >
const TransposeConvolution2dDescriptorGetParameters () const override
 If the layer has a descriptor return it. More...
 
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company). More...
 
- Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
 
const std::string & GetNameStr () const
 
const OutputHandlerGetOutputHandler (unsigned int i=0) const
 
OutputHandlerGetOutputHandler (unsigned int i=0)
 
ShapeInferenceMethod GetShapeInferenceMethod () const
 
bool GetAllowExpandedDims () const
 
const std::vector< InputSlot > & GetInputSlots () const
 
const std::vector< OutputSlot > & GetOutputSlots () const
 
std::vector< InputSlot >::iterator BeginInputSlots ()
 
std::vector< InputSlot >::iterator EndInputSlots ()
 
std::vector< OutputSlot >::iterator BeginOutputSlots ()
 
std::vector< OutputSlot >::iterator EndOutputSlots ()
 
bool IsOutputUnconnected ()
 
void ResetPriority () const
 
LayerPriority GetPriority () const
 
LayerType GetType () const override
 Returns the armnn::LayerType of this layer. More...
 
DataType GetDataType () const
 
const BackendIdGetBackendId () const
 
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer. More...
 
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
 
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
 
virtual void ReleaseConstantData ()
 
template<typename Op >
void OperateOnConstantTensors (Op op)
 
const char * GetName () const override
 Returns the name of the layer. More...
 
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots. More...
 
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots. More...
 
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index. More...
 
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index. More...
 
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index. More...
 
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index. More...
 
void SetGuid (LayerGuid guid)
 
LayerGuid GetGuid () const final
 Returns the unique id of the layer. More...
 
void AddRelatedLayerName (const std::string layerName)
 
const std::list< std::string > & GetRelatedLayerNames ()
 
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
 
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer. More...
 
Optional< BackendIdGetBackendHint () const
 
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
 
void SetAllowExpandedDims (bool allowExpandedDims)
 
template<typename T >
std::shared_ptr< T > GetAdditionalInformation () const
 
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)
 
virtual const BaseDescriptorGetParameters () const override
 If the layer has a descriptor return it. More...
 

Public Attributes

std::shared_ptr< ConstTensorHandlem_Weight
 A unique pointer to store weight values. More...
 
std::shared_ptr< ConstTensorHandlem_Bias
 A unique pointer to store bias values. More...
 

Protected Member Functions

 TransposeConvolution2dLayer (const TransposeConvolution2dDescriptor &param, const char *name)
 Constructor to create a TransposeConvolution2dLayer. More...
 
 ~TransposeConvolution2dLayer ()=default
 Default destructor. More...
 
ImmutableConstantTensors GetConstantTensorsByRef () const override
 Retrieve the handles to the constant values stored by the layer. More...
 
- Protected Member Functions inherited from LayerWithParameters< TransposeConvolution2dDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const TransposeConvolution2dDescriptor &param, const char *name)
 
 ~LayerWithParameters ()=default
 
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *Layer::CreateWorkload. More...
 
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer. More...
 
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
 
- Protected Member Functions inherited from Layer
virtual ~Layer ()=default
 
template<typename QueueDescriptor >
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
 
template<typename QueueDescriptor >
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
 
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
 
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
 
template<typename QueueDescriptor >
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *Layer::CreateWorkload. More...
 
template<typename LayerType , typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
 
virtual ConstantTensors GetConstantTensorsByRef () override final
 
void SetAdditionalInfo (QueueDescriptor &descriptor) const
 
- Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle. More...
 

Additional Inherited Members

- Public Types inherited from LayerWithParameters< TransposeConvolution2dDescriptor >
using DescriptorType = TransposeConvolution2dDescriptor
 
- Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector< std::reference_wrapper< std::shared_ptr< ConstTensorHandle > >>
 
using ImmutableConstantTensors = std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >>
 
- Protected Attributes inherited from LayerWithParameters< TransposeConvolution2dDescriptor >
TransposeConvolution2dDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.). More...
 
- Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
 
std::vector< OutputHandlerm_OutputHandlers
 
ShapeInferenceMethod m_ShapeInferenceMethod
 

Detailed Description

This layer represents a 2D transpose convolution operation.

Definition at line 15 of file TransposeConvolution2dLayer.hpp.

Constructor & Destructor Documentation

◆ TransposeConvolution2dLayer()

TransposeConvolution2dLayer ( const TransposeConvolution2dDescriptor param,
const char *  name 
)
protected

Constructor to create a TransposeConvolution2dLayer.

Parameters
[in]paramTransposeConvolution2dDescriptor to configure the 2D transpose convolution operation.
[in]nameOptional name for the layer.

Definition at line 19 of file TransposeConvolution2dLayer.cpp.

22 {
23 }

References armnn::TransposeConvolution2d.

◆ ~TransposeConvolution2dLayer()

~TransposeConvolution2dLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

TransposeConvolution2dLayer * Clone ( Graph graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 49 of file TransposeConvolution2dLayer.cpp.

50 {
51  auto layer = CloneBase<TransposeConvolution2dLayer>(graph, m_Param, GetName());
52 
53  layer->m_Weight = m_Weight ? m_Weight : nullptr;
54 
55  if (layer->m_Param.m_BiasEnabled)
56  {
57  layer->m_Bias = m_Bias ? m_Bias : nullptr;
58  }
59 
60  return std::move(layer);
61 }

References Layer::GetName(), TransposeConvolution2dLayer::m_Bias, LayerWithParameters< TransposeConvolution2dDescriptor >::m_Param, and TransposeConvolution2dLayer::m_Weight.

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory factory) const
overridevirtual

Makes a workload for the TransposeConvolution2d type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 25 of file TransposeConvolution2dLayer.cpp.

26 {
27  if (!m_Weight)
28  {
29  throw armnn::NullPointerException("TransposeConvolution2dLayer: Weights data should not be null.");
30  }
31 
33  descriptor.m_Weight = m_Weight.get();
34 
36  {
37  if (!m_Bias)
38  {
39  throw armnn::NullPointerException("TransposeConvolution2dLayer: Bias data should not be null.");
40  }
41  descriptor.m_Bias = m_Bias.get();
42  }
43 
44  SetAdditionalInfo(descriptor);
45 
46  return factory.CreateWorkload(LayerType::TransposeConvolution2d, descriptor, PrepInfoAndDesc(descriptor));
47 }

References IWorkloadFactory::CreateWorkload(), TransposeConvolution2dLayer::m_Bias, TransposeConvolution2dQueueDescriptor::m_Bias, TransposeConvolution2dDescriptor::m_BiasEnabled, LayerWithParameters< TransposeConvolution2dDescriptor >::m_Param, TransposeConvolution2dLayer::m_Weight, TransposeConvolution2dQueueDescriptor::m_Weight, LayerWithParameters< TransposeConvolution2dDescriptor >::PrepInfoAndDesc(), Layer::SetAdditionalInfo(), and armnn::TransposeConvolution2d.

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from Layer.

Definition at line 161 of file TransposeConvolution2dLayer.cpp.

162 {
163  ManagedConstTensorHandle managedWeight(m_Weight);
164  std::vector<armnn::ConstTensor> constTensors { { managedWeight.GetTensorInfo(), managedWeight.Map() } };
165 
166  ManagedConstTensorHandle managedBias(m_Bias);
167  if (GetParameters().m_BiasEnabled)
168  {
169  constTensors.emplace_back(ConstTensor(managedBias.GetTensorInfo(), managedBias.Map()));
170  }
171 
172  strategy.ExecuteStrategy(this, GetParameters(), constTensors, GetName());
173 }

References IStrategy::ExecuteStrategy(), Layer::GetName(), LayerWithParameters< TransposeConvolution2dDescriptor >::GetParameters(), ManagedConstTensorHandle::GetTensorInfo(), TransposeConvolution2dLayer::m_Bias, TransposeConvolution2dLayer::m_Weight, and ManagedConstTensorHandle::Map().

◆ GetConstantTensorsByRef()

Layer::ImmutableConstantTensors GetConstantTensorsByRef ( ) const
overrideprotectedvirtual

Retrieve the handles to the constant values stored by the layer.

Returns
A vector of the constant tensors stored by this layer.

Reimplemented from Layer.

Definition at line 155 of file TransposeConvolution2dLayer.cpp.

156 {
157  // For API stability DO NOT ALTER order and add new members to the end of vector
158  return {m_Weight, m_Bias};
159 }

References TransposeConvolution2dLayer::m_Bias, and TransposeConvolution2dLayer::m_Weight.

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > &  inputShapes) const
overridevirtual

Infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes the layer has.
Returns
A vector of the inferred output shape.

Reimplemented from Layer.

Definition at line 63 of file TransposeConvolution2dLayer.cpp.

65 {
66  if (inputShapes.size() != 2)
67  {
68  throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
69  "\" - should be \"2\".");
70  }
71 
72  const TensorShape& inputShape = inputShapes[0];
73  const TensorShape& kernelShape = inputShapes[1];
74 
75  if (inputShape.GetNumDimensions() != 4)
76  {
77  throw armnn::Exception("Transpose convolutions will always have 4D input");
78  }
79 
80  DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
81 
82  const unsigned int batches = inputShape[0];
83 
84  const unsigned int wInput = inputShape[dataLayoutIndex.GetWidthIndex()];
85  const unsigned int hInput = inputShape[dataLayoutIndex.GetHeightIndex()];
86 
87  const unsigned int wKernel = kernelShape[dataLayoutIndex.GetWidthIndex()];
88  const unsigned int hKernel = kernelShape[dataLayoutIndex.GetHeightIndex()];
89 
90  unsigned int wPadding = m_Param.m_PadLeft + m_Param.m_PadRight;
91  unsigned int hPadding = m_Param.m_PadTop + m_Param.m_PadBottom;
92 
93  unsigned int wOutput = (wInput - 1) * m_Param.m_StrideX + wKernel - wPadding;
94  unsigned int hOutput = (hInput - 1) * m_Param.m_StrideY + hKernel - hPadding;
95  unsigned int cOutput = kernelShape[0];
96 
98  TensorShape( { batches, hOutput, wOutput, cOutput } ) :
99  TensorShape( { batches, cOutput, hOutput, wOutput });
100 
101  return std::vector<TensorShape>({ tensorShape });
102 }

References DataLayoutIndexed::GetHeightIndex(), TensorShape::GetNumDimensions(), DataLayoutIndexed::GetWidthIndex(), TransposeConvolution2dDescriptor::m_DataLayout, TransposeConvolution2dDescriptor::m_PadBottom, TransposeConvolution2dDescriptor::m_PadLeft, TransposeConvolution2dDescriptor::m_PadRight, TransposeConvolution2dDescriptor::m_PadTop, LayerWithParameters< TransposeConvolution2dDescriptor >::m_Param, TransposeConvolution2dDescriptor::m_StrideX, TransposeConvolution2dDescriptor::m_StrideY, and armnn::NHWC.

Referenced by TransposeConvolution2dLayer::ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of TransposeConvolution2dLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 104 of file TransposeConvolution2dLayer.cpp.

105 {
107 
108  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
109 
111 
112  if (!m_Weight)
113  {
114  throw armnn::LayerValidationException("TransposeConvolution2dLayer: Weight data cannot be null.");
115  }
116 
117  std::vector<TensorShape> expectedOutputShape;
118  std::vector<TensorShape> outputShapeGivenAsInput;
119 
120  expectedOutputShape = InferOutputShapes({GetInputSlot(0).GetTensorInfo().GetShape(),
121  m_Weight->GetTensorInfo().GetShape() });
122 
123  if (expectedOutputShape.size() != 1)
124  {
125  throw armnn::LayerValidationException("expectedOutputShape' size is "
126  + std::to_string(expectedOutputShape.size()) +
127  " - should be \"1\".");
128  }
129 
130  // If output_shape was specified then use it rather than calculate an inferred output shape.
132  {
133  TensorShape shapeAsTensorShape(static_cast<unsigned int>(m_Param.m_OutputShape.size()),
134  m_Param.m_OutputShape.data());
135  outputShapeGivenAsInput.push_back(shapeAsTensorShape);
136 
137  if (outputShapeGivenAsInput.size() != 1)
138  {
139  throw armnn::LayerValidationException("outputShapeGivenAsInput' size is "
140  + std::to_string(outputShapeGivenAsInput.size()) +
141  " - should be \"1\".");
142  }
143 
144  if (expectedOutputShape != outputShapeGivenAsInput)
145  {
146  throw armnn::LayerValidationException("TransposeConvolution2dLayer: "
147  "output calculated by InferOutputShapes and the output given "
148  "as an input parameter to the layer are not matching");
149  }
150  }
151 
152  ValidateAndCopyShape(outputShape, expectedOutputShape[0], m_ShapeInferenceMethod, "TransposeConvolution2dLayer");
153 }

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), TransposeConvolution2dLayer::InferOutputShapes(), TransposeConvolution2dDescriptor::m_OutputShape, TransposeConvolution2dDescriptor::m_OutputShapeEnabled, LayerWithParameters< TransposeConvolution2dDescriptor >::m_Param, Layer::m_ShapeInferenceMethod, TransposeConvolution2dLayer::m_Weight, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().

Member Data Documentation

◆ m_Bias

◆ m_Weight


The documentation for this class was generated from the following files:
armnn::TransposeConvolution2dDescriptor::m_PadLeft
uint32_t m_PadLeft
Padding left value in the width dimension.
Definition: Descriptors.hpp:1469
armnn::TransposeConvolution2dDescriptor::m_StrideX
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Definition: Descriptors.hpp:1477
armnn::OutputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:100
armnn::DataLayout::NHWC
@ NHWC
armnn::TransposeConvolution2dQueueDescriptor::m_Weight
const ConstTensorHandle * m_Weight
Definition: WorkloadData.hpp:551
CHECK_LOCATION
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
armnnUtils::DataLayoutIndexed
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
Definition: DataLayoutIndexed.hpp:17
armnn::Layer::ValidateAndCopyShape
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:457
armnn::Layer::GetOutputSlot
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
armnn::ManagedConstTensorHandle
Definition: TensorHandle.hpp:187
armnn::Layer::GetInputSlot
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
armnn::LayerWithParameters< TransposeConvolution2dDescriptor >::GetParameters
const TransposeConvolution2dDescriptor & GetParameters() const override
Definition: LayerWithParameters.hpp:19
armnn::TransposeConvolution2dDescriptor::m_PadBottom
uint32_t m_PadBottom
Padding bottom value in the height dimension.
Definition: Descriptors.hpp:1475
armnn::Layer::GetName
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
armnn::InputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:614
armnn::TransposeConvolution2dLayer::m_Bias
std::shared_ptr< ConstTensorHandle > m_Bias
A unique pointer to store bias values.
Definition: TransposeConvolution2dLayer.hpp:21
armnn::TensorShape
Definition: Tensor.hpp:20
armnn::LayerWithParameters< TransposeConvolution2dDescriptor >::m_Param
TransposeConvolution2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Definition: LayerWithParameters.hpp:52
armnn::TensorShape::GetNumDimensions
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition: Tensor.cpp:174
armnn::LayerWithParameters< TransposeConvolution2dDescriptor >::PrepInfoAndDesc
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
Definition: LayerWithParameters.hpp:44
armnn::LayerType::TransposeConvolution2d
@ TransposeConvolution2d
armnn::LayerValidationException
Definition: Exceptions.hpp:105
armnn::Layer::VerifyShapeInferenceType
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:526
armnn::Layer::SetAdditionalInfo
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:303
armnn::TransposeConvolution2dLayer::InferOutputShapes
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
Infers the output shapes from given input shapes and layer properties.
Definition: TransposeConvolution2dLayer.cpp:63
armnn::Exception
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:46
armnn::TransposeConvolution2dDescriptor::m_StrideY
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
Definition: Descriptors.hpp:1479
armnn::TransposeConvolution2dQueueDescriptor::m_Bias
const ConstTensorHandle * m_Bias
Definition: WorkloadData.hpp:552
armnn::TransposeConvolution2dQueueDescriptor
Definition: WorkloadData.hpp:544
armnn::TransposeConvolution2dDescriptor::m_OutputShape
std::vector< unsigned int > m_OutputShape
Definition: Descriptors.hpp:1486
armnn::TransposeConvolution2dLayer::m_Weight
std::shared_ptr< ConstTensorHandle > m_Weight
A unique pointer to store weight values.
Definition: TransposeConvolution2dLayer.hpp:19
armnn::TensorInfo::GetShape
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
armnn::TransposeConvolution2dDescriptor::m_PadTop
uint32_t m_PadTop
Padding top value in the height dimension.
Definition: Descriptors.hpp:1473
armnn::TransposeConvolution2dDescriptor::m_PadRight
uint32_t m_PadRight
Padding right value in the width dimension.
Definition: Descriptors.hpp:1471
armnn::ConstTensor
A tensor defined by a TensorInfo (shape and data type) and an immutable backing store.
Definition: Tensor.hpp:329
armnn::Layer::VerifyLayerConnections
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:410
armnn::TransposeConvolution2dDescriptor::m_OutputShapeEnabled
bool m_OutputShapeEnabled
Output shape if it has been specified.
Definition: Descriptors.hpp:1485
armnn::TransposeConvolution2dDescriptor::m_BiasEnabled
bool m_BiasEnabled
Enable/disable bias.
Definition: Descriptors.hpp:1481
armnn::TransposeConvolution2dDescriptor::m_DataLayout
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
Definition: Descriptors.hpp:1483
armnn::LayerWithParameters< TransposeConvolution2dDescriptor >::LayerWithParameters
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const TransposeConvolution2dDescriptor &param, const char *name)
Definition: LayerWithParameters.hpp:30
armnn::NullPointerException
Definition: Exceptions.hpp:146
armnn::Layer::m_ShapeInferenceMethod
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
armnn::IWorkloadFactory::CreateWorkload
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
armnn::IStrategy::ExecuteStrategy
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0