ArmNN
 25.11
Loading...
Searching...
No Matches
TransposeConvolution2dLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2019-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7#include "LayerCloneBase.hpp"
8
10
13
14using namespace armnnUtils;
15
16namespace armnn
17{
18
24
25std::unique_ptr<IWorkload> TransposeConvolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
26{
27 if (!m_Weight)
28 {
29 throw armnn::NullPointerException("TransposeConvolution2dLayer: Weights data should not be null.");
30 }
31
33 descriptor.m_Weight = m_Weight.get();
34
35 if (m_Param.m_BiasEnabled)
36 {
37 if (!m_Bias)
38 {
39 throw armnn::NullPointerException("TransposeConvolution2dLayer: Bias data should not be null.");
40 }
41 descriptor.m_Bias = m_Bias.get();
42 }
43
44 SetAdditionalInfo(descriptor);
45
46 return factory.CreateWorkload(LayerType::TransposeConvolution2d, descriptor, PrepInfoAndDesc(descriptor));
47}
48
50{
52
53 layer->m_Weight = m_Weight ? m_Weight : nullptr;
54
55 if (layer->m_Param.m_BiasEnabled)
56 {
57 layer->m_Bias = m_Bias ? m_Bias : nullptr;
58 }
59
60 return std::move(layer);
61}
62
64 const std::vector<TensorShape>& inputShapes) const
65{
66 if (inputShapes.size() != 2)
67 {
68 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
69 "\" - should be \"2\".");
70 }
71
72 const TensorShape& inputShape = inputShapes[0];
73 const TensorShape& kernelShape = inputShapes[1];
74
75 if (inputShape.GetNumDimensions() != 4)
76 {
77 throw armnn::Exception("Transpose convolutions will always have 4D input");
78 }
79
80 DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
81
82 const unsigned int batches = inputShape[0];
83
84 const unsigned int wInput = inputShape[dataLayoutIndex.GetWidthIndex()];
85 const unsigned int hInput = inputShape[dataLayoutIndex.GetHeightIndex()];
86
87 const unsigned int wKernel = kernelShape[dataLayoutIndex.GetWidthIndex()];
88 const unsigned int hKernel = kernelShape[dataLayoutIndex.GetHeightIndex()];
89
90 unsigned int wPadding = m_Param.m_PadLeft + m_Param.m_PadRight;
91 unsigned int hPadding = m_Param.m_PadTop + m_Param.m_PadBottom;
92
93 unsigned int wOutput = (wInput - 1) * m_Param.m_StrideX + wKernel - wPadding;
94 unsigned int hOutput = (hInput - 1) * m_Param.m_StrideY + hKernel - hPadding;
95 unsigned int cOutput = kernelShape[0];
96
97 TensorShape tensorShape = m_Param.m_DataLayout == armnn::DataLayout::NHWC ?
98 TensorShape( { batches, hOutput, wOutput, cOutput } ) :
99 TensorShape( { batches, cOutput, hOutput, wOutput });
100
101 return std::vector<TensorShape>({ tensorShape });
102}
103
105{
107
108 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
109
111
112 if (!m_Weight)
113 {
114 throw armnn::LayerValidationException("TransposeConvolution2dLayer: Weight data cannot be null.");
115 }
116
117 std::vector<TensorShape> expectedOutputShape;
118 std::vector<TensorShape> outputShapeGivenAsInput;
119
120 expectedOutputShape = InferOutputShapes({GetInputSlot(0).GetTensorInfo().GetShape(),
121 m_Weight->GetTensorInfo().GetShape() });
122
123 if (expectedOutputShape.size() != 1)
124 {
125 throw armnn::LayerValidationException("expectedOutputShape' size is "
126 + std::to_string(expectedOutputShape.size()) +
127 " - should be \"1\".");
128 }
129
130 // If output_shape was specified then use it rather than calculate an inferred output shape.
131 if (m_Param.m_OutputShapeEnabled)
132 {
133 TensorShape shapeAsTensorShape(static_cast<unsigned int>(m_Param.m_OutputShape.size()),
134 m_Param.m_OutputShape.data());
135 outputShapeGivenAsInput.push_back(shapeAsTensorShape);
136
137 if (outputShapeGivenAsInput.size() != 1)
138 {
139 throw armnn::LayerValidationException("outputShapeGivenAsInput' size is "
140 + std::to_string(outputShapeGivenAsInput.size()) +
141 " - should be \"1\".");
142 }
143
144 if (expectedOutputShape != outputShapeGivenAsInput)
145 {
146 throw armnn::LayerValidationException("TransposeConvolution2dLayer: "
147 "output calculated by InferOutputShapes and the output given "
148 "as an input parameter to the layer are not matching");
149 }
150 }
151
152 ValidateAndCopyShape(outputShape, expectedOutputShape[0], m_ShapeInferenceMethod, "TransposeConvolution2dLayer");
153}
154
156{
157 // For API stability DO NOT ALTER order and add new members to the end of vector
158 return {m_Weight, m_Bias};
159}
160
162{
163 ManagedConstTensorHandle managedWeight(m_Weight);
164 std::vector<armnn::ConstTensor> constTensors { { managedWeight.GetTensorInfo(), managedWeight.Map() } };
165
166 ManagedConstTensorHandle managedBias(m_Bias);
167 if (GetParameters().m_BiasEnabled)
168 {
169 constTensors.emplace_back(ConstTensor(managedBias.GetTensorInfo(), managedBias.Map()));
170 }
171
172 strategy.ExecuteStrategy(this, GetParameters(), constTensors, GetName());
173}
174
175} // namespace armnn
#define CHECK_LOCATION()
A tensor defined by a TensorInfo (shape and data type) and an immutable backing store.
Definition Tensor.hpp:330
Base class for all ArmNN exceptions so that users can filter to just those.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > > > ImmutableConstantTensors
Definition INetwork.hpp:141
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const TransposeConvolution2dDescriptor &param, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const TransposeConvolution2dDescriptor & GetParameters() const override
const void * Map(bool blocking=true)
RAII Managed resource Unmaps MemoryArea once out of scope.
const TensorInfo & GetTensorInfo() const
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
const TensorShape & GetShape() const
Definition Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
TransposeConvolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values stored by the layer.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::shared_ptr< ConstTensorHandle > m_Weight
A unique pointer to store weight values.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
Infers the output shapes from given input shapes and layer properties.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of TransposeConvolution2dLayer.
std::shared_ptr< ConstTensorHandle > m_Bias
A unique pointer to store bias values.
TransposeConvolution2dLayer(const TransposeConvolution2dDescriptor &param, const char *name)
Constructor to create a TransposeConvolution2dLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the TransposeConvolution2d type.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetHeightIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
A TransposeConvolution2dDescriptor for the TransposeConvolution2dLayer.