25 const std::vector<TensorShape>& inputShapes =
33 unsigned int filterDepth = filterShape[0];
34 unsigned int filterHeight = filterShape[1];
35 unsigned int filterWidth = filterShape[2];
36 unsigned int inChannels = filterShape[3];
37 unsigned int outChannels = filterShape[4];
39 fn(
"FilterDepth",std::to_string(filterDepth));
40 fn(
"FilterHeight",std::to_string(filterHeight));
41 fn(
"FilterWidth",std::to_string(filterWidth));
42 fn(
"InputChannels",std::to_string(inChannels));
43 fn(
"OutputChannels",std::to_string(outChannels));
59 return std::move(layer);
64 if (inputShapes.size() != 2)
66 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
67 "\" - should be \"2\".");
95 unsigned int inWidth = inputShape[dataLayoutIndex.
GetWidthIndex()];
96 unsigned int inHeight = inputShape[dataLayoutIndex.
GetHeightIndex()];
97 unsigned int inDepth = inputShape[dataLayoutIndex.
GetDepthIndex()];
98 unsigned int inBatchSize = inputShape[0];
101 unsigned int filterDepth = filterShape[0];
102 unsigned int dilatedFilterDepth = filterDepth + (
m_Param.m_DilationZ - 1) * (filterDepth - 1);
103 unsigned int readDepth = (inDepth +
m_Param.m_PadFront +
m_Param.m_PadBack) - dilatedFilterDepth;
104 unsigned int outDepth = 1 + (readDepth /
m_Param.m_StrideZ);
106 unsigned int filterHeight = filterShape[1];
107 unsigned int dilatedFilterHeight = filterHeight + (
m_Param.m_DilationY - 1) * (filterHeight - 1);
108 unsigned int readHeight = (inHeight +
m_Param.m_PadTop +
m_Param.m_PadBottom) - dilatedFilterHeight;
109 unsigned int outHeight = 1 + (readHeight /
m_Param.m_StrideY);
111 unsigned int filterWidth = filterShape[2];
112 unsigned int dilatedFilterWidth = filterWidth + (
m_Param.m_DilationX - 1) * (filterWidth - 1);
113 unsigned int readWidth = (inWidth +
m_Param.m_PadLeft +
m_Param.m_PadRight) - dilatedFilterWidth;
114 unsigned int outWidth = 1 + (readWidth /
m_Param.m_StrideX);
116 unsigned int outChannels = filterShape[4];
117 unsigned int outBatchSize = inBatchSize;
120 TensorShape( { outBatchSize, outDepth, outHeight, outWidth, outChannels } ) :
121 TensorShape( { outBatchSize, outChannels, outDepth, outHeight, outWidth });
123 return std::vector<TensorShape>({ tensorShape });
143 if (inferredShapes.size() != 1)
146 + std::to_string(inferredShapes.size()) +
147 " elements - should only have 1.");
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Convolution3dLayer.
Convolution3dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Convolution3d type.
Convolution3dLayer(const Convolution3dDescriptor ¶m, const char *name)
Constructor to create a Convolution3dLayer.
Base class for all ArmNN exceptions so that users can filter to just those.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
ShapeInferenceMethod m_ShapeInferenceMethod
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const Convolution3dDescriptor ¶m, const char *name)
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const Convolution3dDescriptor & GetParameters() const override
Convolution3dDescriptor m_Param
const TensorInfo & GetTensorInfo() const override
const TensorShape & GetShape() const
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetWidthIndex() const
unsigned int GetDepthIndex() const
unsigned int GetHeightIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
uint32_t GetNumInputs(bool biasEnabled)
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
A Convolution3dDescriptor for the Convolution3dLayer.