ArmNN
 25.11
Loading...
Searching...
No Matches
DepthwiseConvolution2dLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7#include "LayerCloneBase.hpp"
8
10
12
15
16#include <string>
17
18using namespace armnnUtils;
19
20namespace armnn
21{
22
28
30{
31 const std::vector<TensorShape>& inputShapes =
32 {
35 };
36 const TensorShape filterShape = inputShapes[1];
37 unsigned int inputChannels = filterShape[1];
38 unsigned int filterWidth = filterShape[3];
39 unsigned int filterHeight = filterShape[2];
40 unsigned int depthMultiplier = filterShape[0];
41
42 fn("FilterWidth",std::to_string(filterWidth));
43 fn("FilterHeight",std::to_string(filterHeight));
44 fn("DepthMultiplier",std::to_string(depthMultiplier));
45 fn("InputChannels",std::to_string(inputChannels));
46
48}
49
50std::unique_ptr<IWorkload> DepthwiseConvolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
51{
53 SetAdditionalInfo(descriptor);
54
55 return factory.CreateWorkload(LayerType::DepthwiseConvolution2d, descriptor, PrepInfoAndDesc(descriptor));
56}
57
59{
61 return std::move(layer);
62}
63
64std::vector<TensorShape>
65DepthwiseConvolution2dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
66{
67 if (inputShapes.size() != 2)
68 {
69 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
70 "\" - should be \"2\".");
71 }
72
73 const TensorShape& inputShape = inputShapes[0];
74 const TensorShape& filterShape = inputShapes[1];
75
76 if (inputShape.GetNumDimensions() != 4)
77 {
78 throw armnn::Exception("Convolutions will always have 4D input.");
79 }
80
81 if (m_Param.m_StrideX == 0)
82 {
83 throw armnn::Exception("m_StrideX cannot be 0.");
84 }
85
86 if (m_Param.m_StrideY == 0)
87 {
88 throw armnn::Exception("m_StrideY cannot be 0.");
89 }
90
91
92 DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
93
94 unsigned int inputBatchSize = inputShape[0];
95 unsigned int inputHeight = inputShape[dataLayoutIndex.GetHeightIndex()];
96 unsigned int inputWidth = inputShape[dataLayoutIndex.GetWidthIndex()];
97
98 // Expected filter shape: [ 1, H, W, O ] - This shape does NOT depend on the data layout
99 // Namely: [ 1, filter height, filter width, output channels ]
100
101 unsigned int filterHeight = filterShape[1];
102 unsigned int dilatedFilterHeight = filterHeight + (m_Param.m_DilationY - 1) * (filterHeight - 1);
103 unsigned int readHeight = (inputHeight + m_Param.m_PadTop + m_Param.m_PadBottom) - dilatedFilterHeight;
104 unsigned int outputHeight = 1 + (readHeight / m_Param.m_StrideY);
105
106 unsigned int filterWidth = filterShape[2];
107 unsigned int dilatedFilterWidth = filterWidth + (m_Param.m_DilationX - 1) * (filterWidth - 1);
108 unsigned int readWidth = (inputWidth + m_Param.m_PadLeft + m_Param.m_PadRight) - dilatedFilterWidth;
109 unsigned int outputWidth = 1 + (readWidth / m_Param.m_StrideX);
110
111 unsigned int outputChannels = filterShape[3];
112 unsigned int outputBatchSize = inputBatchSize;
113
114 TensorShape tensorShape = m_Param.m_DataLayout == armnn::DataLayout::NHWC ?
115 TensorShape{ outputBatchSize, outputHeight, outputWidth, outputChannels } :
116 TensorShape{ outputBatchSize, outputChannels, outputHeight, outputWidth };
117
118 return std::vector<TensorShape>{ tensorShape };
119}
120
122{
124
125 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
126
128
129 if (!GetInputSlot(1).GetConnection())
130 {
131 throw armnn::LayerValidationException("DepthwiseConvolution2dLayer: Weights data should not be null.");
132 }
133
134 auto inferredShapes = InferOutputShapes({
137 });
138
139 if (inferredShapes.size() != 1)
140 {
141 throw armnn::LayerValidationException("inferredShapes has "
142 + std::to_string(inferredShapes.size()) +
143 " elements - should only have 1.");
144 }
145
146 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "DepthwiseConvolution2dLayer");
147}
148
154
156{
157 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
158}
159
160} // namespace armnn
#define CHECK_LOCATION()
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values connected to the layer.
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
DepthwiseConvolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of DepthwiseConvolution2dLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the DepthwiseConvolution2d type.
DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor &param, const char *name)
Constructor to create a DepthwiseConvolution2dLayer.
Base class for all ArmNN exceptions so that users can filter to just those.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > > > ImmutableConstantTensors
Definition INetwork.hpp:141
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const DepthwiseConvolution2dDescriptor &param, const char *name)
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const DepthwiseConvolution2dDescriptor & GetParameters() const override
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
const TensorShape & GetShape() const
Definition Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetHeightIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
uint32_t GetNumInputs(bool biasEnabled)
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
A DepthwiseConvolution2dDescriptor for the DepthwiseConvolution2dLayer.
Depthwise Convolution 2D layer workload data.