31 const std::vector<TensorShape>& inputShapes =
37 unsigned int inputChannels = filterShape[1];
38 unsigned int filterWidth = filterShape[3];
39 unsigned int filterHeight = filterShape[2];
40 unsigned int depthMultiplier = filterShape[0];
42 fn(
"FilterWidth",std::to_string(filterWidth));
43 fn(
"FilterHeight",std::to_string(filterHeight));
44 fn(
"DepthMultiplier",std::to_string(depthMultiplier));
45 fn(
"InputChannels",std::to_string(inputChannels));
60 auto layer = CloneBase<DepthwiseConvolution2dLayer>(graph,
m_Param,
GetName());
61 return std::move(layer);
64 std::vector<TensorShape>
67 if (inputShapes.size() != 2)
69 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
70 "\" - should be \"2\".");
94 unsigned int inputBatchSize = inputShape[0];
95 unsigned int inputHeight = inputShape[dataLayoutIndex.
GetHeightIndex()];
96 unsigned int inputWidth = inputShape[dataLayoutIndex.
GetWidthIndex()];
101 unsigned int filterHeight = filterShape[1];
102 unsigned int dilatedFilterHeight = filterHeight + (
m_Param.
m_DilationY - 1) * (filterHeight - 1);
106 unsigned int filterWidth = filterShape[2];
107 unsigned int dilatedFilterWidth = filterWidth + (
m_Param.
m_DilationX - 1) * (filterWidth - 1);
111 unsigned int outputChannels = filterShape[3];
112 unsigned int outputBatchSize = inputBatchSize;
115 TensorShape{ outputBatchSize, outputHeight, outputWidth, outputChannels } :
116 TensorShape{ outputBatchSize, outputChannels, outputHeight, outputWidth };
118 return std::vector<TensorShape>{ tensorShape };
139 if (inferredShapes.size() != 1)
142 + std::to_string(inferredShapes.size()) +
143 " elements - should only have 1.");
This layer represents a depthwise convolution 2d operation.
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values connected to the layer.
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
DepthwiseConvolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of DepthwiseConvolution2dLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the DepthwiseConvolution2d type.
DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor ¶m, const char *name)
Constructor to create a DepthwiseConvolution2dLayer.
Base class for all ArmNN exceptions so that users can filter to just those.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >> ImmutableConstantTensors
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
const char * GetName() const override
Returns the name of the layer.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
ShapeInferenceMethod m_ShapeInferenceMethod
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
DepthwiseConvolution2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
const DepthwiseConvolution2dDescriptor & GetParameters() const override
const TensorInfo & GetTensorInfo() const override
const TensorShape & GetShape() const
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetWidthIndex() const
unsigned int GetHeightIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
uint32_t GetNumInputs(bool biasEnabled)
A DepthwiseConvolution2dDescriptor for the DepthwiseConvolution2dLayer.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation factor value for height dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t GetNumInputs() const
Get the number of views/inputs.
uint32_t m_DilationX
Dilation factor value for width dimension.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Depthwise Convolution 2D layer workload data.