ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
DepthwiseConvolution2dLayer.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
7 #include "LayerCloneBase.hpp"
8 
9 #include <armnn/TypesUtils.hpp>
10 
12 
15 
16 #include <string>
17 
18 using namespace armnnUtils;
19 
20 namespace armnn
21 {
22 
24  const char* name)
26 {
27 }
28 
30 {
31  const std::vector<TensorShape>& inputShapes =
32  {
35  };
36  const TensorShape filterShape = inputShapes[1];
37  unsigned int inputChannels = filterShape[1];
38  unsigned int filterWidth = filterShape[3];
39  unsigned int filterHeight = filterShape[2];
40  unsigned int depthMultiplier = filterShape[0];
41 
42  fn("FilterWidth",std::to_string(filterWidth));
43  fn("FilterHeight",std::to_string(filterHeight));
44  fn("DepthMultiplier",std::to_string(depthMultiplier));
45  fn("InputChannels",std::to_string(inputChannels));
46 
48 }
49 
50 std::unique_ptr<IWorkload> DepthwiseConvolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
51 {
53  SetAdditionalInfo(descriptor);
54 
55  return factory.CreateWorkload(LayerType::DepthwiseConvolution2d, descriptor, PrepInfoAndDesc(descriptor));
56 }
57 
59 {
60  auto layer = CloneBase<DepthwiseConvolution2dLayer>(graph, m_Param, GetName());
61  return std::move(layer);
62 }
63 
64 std::vector<TensorShape>
65 DepthwiseConvolution2dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
66 {
67  if (inputShapes.size() != 2)
68  {
69  throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
70  "\" - should be \"2\".");
71  }
72 
73  const TensorShape& inputShape = inputShapes[0];
74  const TensorShape& filterShape = inputShapes[1];
75 
76  if (inputShape.GetNumDimensions() != 4)
77  {
78  throw armnn::Exception("Convolutions will always have 4D input.");
79  }
80 
81  if (m_Param.m_StrideX == 0)
82  {
83  throw armnn::Exception("m_StrideX cannot be 0.");
84  }
85 
86  if (m_Param.m_StrideY == 0)
87  {
88  throw armnn::Exception("m_StrideY cannot be 0.");
89  }
90 
91 
92  DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
93 
94  unsigned int inputBatchSize = inputShape[0];
95  unsigned int inputHeight = inputShape[dataLayoutIndex.GetHeightIndex()];
96  unsigned int inputWidth = inputShape[dataLayoutIndex.GetWidthIndex()];
97 
98  // Expected filter shape: [ 1, H, W, O ] - This shape does NOT depend on the data layout
99  // Namely: [ 1, filter height, filter width, output channels ]
100 
101  unsigned int filterHeight = filterShape[1];
102  unsigned int dilatedFilterHeight = filterHeight + (m_Param.m_DilationY - 1) * (filterHeight - 1);
103  unsigned int readHeight = (inputHeight + m_Param.m_PadTop + m_Param.m_PadBottom) - dilatedFilterHeight;
104  unsigned int outputHeight = 1 + (readHeight / m_Param.m_StrideY);
105 
106  unsigned int filterWidth = filterShape[2];
107  unsigned int dilatedFilterWidth = filterWidth + (m_Param.m_DilationX - 1) * (filterWidth - 1);
108  unsigned int readWidth = (inputWidth + m_Param.m_PadLeft + m_Param.m_PadRight) - dilatedFilterWidth;
109  unsigned int outputWidth = 1 + (readWidth / m_Param.m_StrideX);
110 
111  unsigned int outputChannels = filterShape[3];
112  unsigned int outputBatchSize = inputBatchSize;
113 
115  TensorShape{ outputBatchSize, outputHeight, outputWidth, outputChannels } :
116  TensorShape{ outputBatchSize, outputChannels, outputHeight, outputWidth };
117 
118  return std::vector<TensorShape>{ tensorShape };
119 }
120 
122 {
124 
125  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
126 
128 
129  if (!GetInputSlot(1).GetConnection())
130  {
131  throw armnn::LayerValidationException("DepthwiseConvolution2dLayer: Weights data should not be null.");
132  }
133 
134  auto inferredShapes = InferOutputShapes({
137  });
138 
139  if (inferredShapes.size() != 1)
140  {
141  throw armnn::LayerValidationException("inferredShapes has "
142  + std::to_string(inferredShapes.size()) +
143  " elements - should only have 1.");
144  }
145 
146  ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "DepthwiseConvolution2dLayer");
147 }
148 
150 {
152  return tensors;
153 }
154 
156 {
157  strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
158 }
159 
160 } // namespace armnn
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
This layer represents a depthwise convolution 2d operation.
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values connected to the layer.
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
DepthwiseConvolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of DepthwiseConvolution2dLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the DepthwiseConvolution2d type.
DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor &param, const char *name)
Constructor to create a DepthwiseConvolution2dLayer.
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:47
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >> ImmutableConstantTensors
Definition: INetwork.hpp:141
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:410
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:526
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
DepthwiseConvolution2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
const DepthwiseConvolution2dDescriptor & GetParameters() const override
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:100
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition: Tensor.cpp:174
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetWidthIndex() const
unsigned int GetHeightIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition: Types.hpp:494
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
uint32_t GetNumInputs(bool biasEnabled)
A DepthwiseConvolution2dDescriptor for the DepthwiseConvolution2dLayer.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation factor value for height dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t GetNumInputs() const
Get the number of views/inputs.
uint32_t m_DilationX
Dilation factor value for width dimension.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Depthwise Convolution 2D layer workload data.