42 if (inputShapes.size() != 1)
44 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
45 "\" - should be \"1\".");
57 unsigned int inWidth = inputShape[dimensionIndices.
GetWidthIndex()];
58 unsigned int inHeight = inputShape[dimensionIndices.
GetHeightIndex()];
59 unsigned int inDepth = inputShape[dimensionIndices.
GetDepthIndex()];
61 unsigned int inBatchSize = inputShape[0];
64 unsigned int outWidth = 1;
65 unsigned int outHeight = 1;
66 unsigned int outDepth = 1;
71 throw armnn::Exception(
"Stride can only be zero when performing global pooling");
74 auto CalcSize = [](
auto inSize,
auto lowPad,
auto highPad,
auto poolSize,
auto stride,
auto outputShapeRounding)
76 unsigned int readSize = inSize + lowPad + highPad - poolSize;
77 float div =
static_cast<float>(readSize) /
static_cast<float>(stride);
79 unsigned int size = 0;
80 switch (outputShapeRounding)
83 size =
static_cast<unsigned int>(
ceil(div)) + 1;
85 case OutputShapeRounding ::Floor:
86 size =
static_cast<unsigned int>(floor(div)) + 1;
94 if ((size - 1)*stride >= inSize + lowPad)
103 m_Param.m_OutputShapeRounding);
105 m_Param.m_OutputShapeRounding);
107 m_Param.m_OutputShapeRounding);
109 unsigned int outChannels = inChannels;
110 unsigned int outBatchSize = inBatchSize;
113 TensorShape( { outBatchSize, outDepth, outHeight, outWidth, outChannels } ) :
114 TensorShape( { outBatchSize, outChannels, outDepth, outHeight, outWidth });
116 return std::vector<TensorShape>({ tensorShape });
129 if (inferredShapes.size() != 1)
132 + std::to_string(inferredShapes.size()) +
133 " elements - should only have 1.");
Base class for all ArmNN exceptions so that users can filter to just those.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
ShapeInferenceMethod m_ShapeInferenceMethod
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const Pooling3dDescriptor ¶m, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const Pooling3dDescriptor & GetParameters() const override
Pooling3dDescriptor m_Param
const TensorInfo & GetTensorInfo() const override
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Pooling3dLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Pooling3d type.
Pooling3dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Pooling3dLayer(const Pooling3dDescriptor ¶m, const char *name)
Constructor to create a Pooling3dLayer.
const TensorShape & GetShape() const
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetWidthIndex() const
unsigned int GetDepthIndex() const
unsigned int GetHeightIndex() const
unsigned int GetChannelsIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
void Pooling3d(Decoder< float > &rInputDecoder, Encoder< float > &rOutputEncoder, const TensorInfo &inputInfo, const TensorInfo &outputInfo, const Pooling3dDescriptor ¶ms)
Computes the Pooling3d operation.
A Pooling3dDescriptor for the Pooling3dLayer.