ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Convolution2dLayer.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "Convolution2dLayer.hpp"
7 #include "LayerCloneBase.hpp"
8 
9 #include <armnn/TypesUtils.hpp>
10 
12 
15 
16 #include <string>
17 
18 using namespace armnnUtils;
19 
20 namespace armnn
21 {
22 
24  : LayerWithParameters(param.GetNumInputs(), 1, LayerType::Convolution2d, param, name)
25 {
26 
27 }
28 
30 {
31  //using DescriptorType = Parameters;
32  const std::vector<TensorShape>& inputShapes =
33  {
36  };
37  const TensorShape filterShape = inputShapes[1];
38  DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
39  unsigned int filterWidth = filterShape[dataLayoutIndex.GetWidthIndex()];
40  unsigned int filterHeight = filterShape[dataLayoutIndex.GetHeightIndex()];
41  unsigned int outChannels = filterShape[0];
42 
43  fn("OutputChannels",std::to_string(outChannels));
44  fn("FilterWidth",std::to_string(filterWidth));
45  fn("FilterHeight",std::to_string(filterHeight));
47 }
48 
49 std::unique_ptr<IWorkload> Convolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
50 {
51  ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "Convolution2dLayer_CreateWorkload");
53  SetAdditionalInfo(descriptor);
54 
55  return factory.CreateWorkload(LayerType::Convolution2d, descriptor, PrepInfoAndDesc(descriptor));
56 }
57 
59 {
60  auto layer = CloneBase<Convolution2dLayer>(graph, m_Param, GetName());
61  return std::move(layer);
62 }
63 
64 std::vector<TensorShape> Convolution2dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
65 {
66  if (inputShapes.size() != 2)
67  {
68  throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
69  "\" - should be \"2\".");
70  }
71 
72  const TensorShape& inputShape = inputShapes[0];
73  const TensorShape filterShape = inputShapes[1];
74 
75  // If we support multiple batch dimensions in the future, then this assert will need to change.
76  if (inputShape.GetNumDimensions() != 4)
77  {
78  throw armnn::Exception("Convolutions will always have 4D input.");
79  }
80 
81  if (m_Param.m_StrideX == 0)
82  {
83  throw armnn::Exception("m_StrideX cannot be 0.");
84  }
85 
86  if (m_Param.m_StrideY == 0)
87  {
88  throw armnn::Exception("m_StrideY cannot be 0.");
89  }
90 
91  DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
92 
93  unsigned int inWidth = inputShape[dataLayoutIndex.GetWidthIndex()];
94  unsigned int inHeight = inputShape[dataLayoutIndex.GetHeightIndex()];
95  unsigned int inBatchSize = inputShape[0];
96 
97  unsigned int filterWidth = filterShape[dataLayoutIndex.GetWidthIndex()];
98  unsigned int dilatedFilterWidth = filterWidth + (m_Param.m_DilationX - 1) * (filterWidth - 1);
99  unsigned int readWidth = (inWidth + m_Param.m_PadLeft + m_Param.m_PadRight) - dilatedFilterWidth;
100  unsigned int outWidth = 1 + (readWidth / m_Param.m_StrideX);
101 
102  unsigned int filterHeight = filterShape[dataLayoutIndex.GetHeightIndex()];
103  unsigned int dilatedFilterHeight = filterHeight + (m_Param.m_DilationY - 1) * (filterHeight - 1);
104  unsigned int readHeight = (inHeight + m_Param.m_PadTop + m_Param.m_PadBottom) - dilatedFilterHeight;
105  unsigned int outHeight = 1 + (readHeight / m_Param.m_StrideY);
106 
107  unsigned int outChannels = filterShape[0];
108  unsigned int outBatchSize = inBatchSize;
109 
111  TensorShape( { outBatchSize, outHeight, outWidth, outChannels } ) :
112  TensorShape( { outBatchSize, outChannels, outHeight, outWidth });
113 
114  return std::vector<TensorShape>({ tensorShape });
115 }
116 
118 {
120 
121  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
122 
124 
125  if (!GetInputSlot(1).GetConnection())
126  {
127  throw armnn::NullPointerException("Convolution2dLayer: Weights should be connected to input slot 1.");
128  }
129 
130  std::vector<TensorShape> inferredShapes = InferOutputShapes({
133 
134  if (inferredShapes.size() != 1)
135  {
136  throw armnn::Exception("inferredShapes has "
137  + std::to_string(inferredShapes.size()) +
138  " elements - should only have 1.");
139  }
140 
141  ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "Convolution2dLayer");
142 }
143 
145 {
147  return tensors;
148 }
149 
151 {
152  strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
153 }
154 
155 } // namespace armnn
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
#define ARMNN_SCOPED_PROFILING_EVENT(backendId, name)
Definition: Profiling.hpp:220
This layer represents a convolution 2d operation.
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values connected to the layer.
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Convolution2dLayer.
Convolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Convolution2dLayer(const Convolution2dDescriptor &param, const char *name)
Constructor to create a Convolution2dLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Convolution2d type.
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:47
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >> ImmutableConstantTensors
Definition: INetwork.hpp:141
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:410
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:526
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
Convolution2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
const Convolution2dDescriptor & GetParameters() const override
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:100
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition: Tensor.cpp:174
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetWidthIndex() const
unsigned int GetHeightIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition: Types.hpp:494
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
uint32_t GetNumInputs(bool biasEnabled)
A Convolution2dDescriptor for the Convolution2dLayer.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation along y axis.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation along x axis.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.