ArmNN
 25.11
Loading...
Searching...
No Matches
Convolution2dLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7#include "LayerCloneBase.hpp"
8
10
12
15
16#include <string>
17
18using namespace armnnUtils;
19
20namespace armnn
21{
22
24 : LayerWithParameters(param.GetNumInputs(), 1, LayerType::Convolution2d, param, name)
25{
26
27}
28
30{
31 //using DescriptorType = Parameters;
32 const std::vector<TensorShape>& inputShapes =
33 {
36 };
37 const TensorShape filterShape = inputShapes[1];
38 DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
39 unsigned int filterWidth = filterShape[dataLayoutIndex.GetWidthIndex()];
40 unsigned int filterHeight = filterShape[dataLayoutIndex.GetHeightIndex()];
41 unsigned int outChannels = filterShape[0];
42
43 fn("OutputChannels",std::to_string(outChannels));
44 fn("FilterWidth",std::to_string(filterWidth));
45 fn("FilterHeight",std::to_string(filterHeight));
47}
48
49std::unique_ptr<IWorkload> Convolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
50{
51 ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "Convolution2dLayer_CreateWorkload");
53 SetAdditionalInfo(descriptor);
54
55 return factory.CreateWorkload(LayerType::Convolution2d, descriptor, PrepInfoAndDesc(descriptor));
56}
57
59{
60 auto layer = CloneBase<Convolution2dLayer>(graph, m_Param, GetName());
61 return std::move(layer);
62}
63
64std::vector<TensorShape> Convolution2dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
65{
66 if (inputShapes.size() != 2)
67 {
68 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
69 "\" - should be \"2\".");
70 }
71
72 const TensorShape& inputShape = inputShapes[0];
73 const TensorShape filterShape = inputShapes[1];
74
75 // If we support multiple batch dimensions in the future, then this assert will need to change.
76 if (inputShape.GetNumDimensions() != 4)
77 {
78 throw armnn::Exception("Convolutions will always have 4D input.");
79 }
80
81 if (m_Param.m_StrideX == 0)
82 {
83 throw armnn::Exception("m_StrideX cannot be 0.");
84 }
85
86 if (m_Param.m_StrideY == 0)
87 {
88 throw armnn::Exception("m_StrideY cannot be 0.");
89 }
90
91 DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
92
93 unsigned int inWidth = inputShape[dataLayoutIndex.GetWidthIndex()];
94 unsigned int inHeight = inputShape[dataLayoutIndex.GetHeightIndex()];
95 unsigned int inBatchSize = inputShape[0];
96
97 unsigned int filterWidth = filterShape[dataLayoutIndex.GetWidthIndex()];
98 unsigned int dilatedFilterWidth = filterWidth + (m_Param.m_DilationX - 1) * (filterWidth - 1);
99 unsigned int readWidth = (inWidth + m_Param.m_PadLeft + m_Param.m_PadRight) - dilatedFilterWidth;
100 unsigned int outWidth = 1 + (readWidth / m_Param.m_StrideX);
101
102 unsigned int filterHeight = filterShape[dataLayoutIndex.GetHeightIndex()];
103 unsigned int dilatedFilterHeight = filterHeight + (m_Param.m_DilationY - 1) * (filterHeight - 1);
104 unsigned int readHeight = (inHeight + m_Param.m_PadTop + m_Param.m_PadBottom) - dilatedFilterHeight;
105 unsigned int outHeight = 1 + (readHeight / m_Param.m_StrideY);
106
107 unsigned int outChannels = filterShape[0];
108 unsigned int outBatchSize = inBatchSize;
109
110 TensorShape tensorShape = m_Param.m_DataLayout == armnn::DataLayout::NHWC ?
111 TensorShape( { outBatchSize, outHeight, outWidth, outChannels } ) :
112 TensorShape( { outBatchSize, outChannels, outHeight, outWidth });
113
114 return std::vector<TensorShape>({ tensorShape });
115}
116
118{
120
121 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
122
124
125 if (!GetInputSlot(1).GetConnection())
126 {
127 throw armnn::NullPointerException("Convolution2dLayer: Weights should be connected to input slot 1.");
128 }
129
130 std::vector<TensorShape> inferredShapes = InferOutputShapes({
133
134 if (inferredShapes.size() != 1)
135 {
136 throw armnn::Exception("inferredShapes has "
137 + std::to_string(inferredShapes.size()) +
138 " elements - should only have 1.");
139 }
140
141 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "Convolution2dLayer");
142}
143
149
151{
152 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
153}
154
155} // namespace armnn
#define CHECK_LOCATION()
#define ARMNN_SCOPED_PROFILING_EVENT(backendId, name)
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values connected to the layer.
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Convolution2dLayer.
Convolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Convolution2dLayer(const Convolution2dDescriptor &param, const char *name)
Constructor to create a Convolution2dLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Convolution2d type.
Base class for all ArmNN exceptions so that users can filter to just those.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > > > ImmutableConstantTensors
Definition INetwork.hpp:141
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const Convolution2dDescriptor &param, const char *name)
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const Convolution2dDescriptor & GetParameters() const override
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
const TensorShape & GetShape() const
Definition Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
unsigned int GetHeightIndex() const
Copyright (c) 2021 ARM Limited and Contributors.
uint32_t GetNumInputs(bool biasEnabled)
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
A Convolution2dDescriptor for the Convolution2dLayer.